Polynomial algorithm for sharp upper bound of rainbow connection number of maximal outerplanar graphs
نویسندگان
چکیده
For a finite simple edge-colored connected graph G (the coloring may not be proper), a rainbow path in G is a path without two edges colored the same; G is rainbow connected if for any two vertices of G, there is a rainbow path connecting them. Rainbow connection number, rc(G), of G is the minimum number of colors needed to color its edges such that G is rainbow connected. Chakraborty et al. (2011) [5] proved that computing rc(G) is NP-hard and deciding if rc(G) = 2 is NP-complete. When edges of G are colored with fixed number k of colors, Kratochvil [6] proposed a question: what is the complexity of deciding whether G is rainbow connected? is this an FPT problem? In this paper, we prove that any maximal outerplanar graph is k rainbow connected for suitably large k and can be given a rainbow coloring in polynomial time. © 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
Graphs and colors : edge-colored graphs, edge-colorings and proper connections. (Graphes et couleurs : graphes arêtes-coloriés, coloration d'arêtes et connexité propre)
In this thesis, we study different problems in edge-colored graphs and edge-colored multigraphs, such as proper connection, strong edge colorings, and proper hamiltonian paths and cycles. Finally, we improve the known O(n) algorithm to decide the behavior of a graph under the biclique operator, by studying bicliques in graphs without false-twin vertices. In particular, • We first study the k-pr...
متن کاملRainbow connections for outerplanar graphs with diameter 2 and 3
An edge-colored graph G is rainbow connected if every two vertices are connected by a path whose edges have distinct colors. The rainbow connection number of a connected graph G, denoted by rcðGÞ, is the smallest number of colors that are needed in order to make G rainbow connected. It was proved that computing rcðGÞ is an NP-hard problem, as well as that even deciding whether a graph has rcðGÞ...
متن کاملNote on rainbow connection in oriented graphs with diameter 2
In this note, we provide a sharp upper bound on the rainbow connection number of tournaments of diameter 2. For a tournament T of diameter 2, we show 2 ≤ − →rc(T ) ≤ 3. Furthermore, we provide a general upper bound on the rainbow k-connection number of tournaments as a simple example of the probabilistic method. Finally, we show that an edge-colored tournament of kth diameter 2 has rainbow k-co...
متن کاملSome Results on the Maximal 2-Rainbow Domination Number in Graphs
A 2-rainbow dominating function ( ) of a graph is a function from the vertex set to the set of all subsets of the set such that for any vertex with the condition is fulfilled, where is the open neighborhood of . A maximal 2-rainbow dominating function on a graph is a 2-rainbow dominating function such that the set is not a dominating set of . The weight of a maximal is the value . ...
متن کاملSharp Upper bounds for Multiplicative Version of Degree Distance and Multiplicative Version of Gutman Index of Some Products of Graphs
In $1994,$ degree distance of a graph was introduced by Dobrynin, Kochetova and Gutman. And Gutman proposed the Gutman index of a graph in $1994.$ In this paper, we introduce the concepts of multiplicative version of degree distance and the multiplicative version of Gutman index of a graph. We find the sharp upper bound for the multiplicative version of degree distance and multiplicative ver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Math. Lett.
دوره 25 شماره
صفحات -
تاریخ انتشار 2012